
Comparing Automatic Identifications in the Macrolipidomic Profiles of Human 
Whole Blood Across UHPLC-MS/MS Platforms and Acquisition Modes

Overview
Purpose: To examine the total number and quality of positive lipid 
identifications in human whole blood samples across different MS platforms 
and acquisition modes, and analysis using automated software.

Methods: Lipid extracts from technical replicate samples were analyzed 
by UHPLC-MS/MS using the same LC method, but different acquisition 
modes on a Waters Synapt G2Si QTOF (HDDIA [aka HDMSE], HDDDA and 
DDA), and a Thermo Q-Exactive Orbitrap (DDA). Data was processed using 
SimLipid software.

Results: The QTOF-HDDDA method resulted in the largest number of total 
lipid identifications, but the QTOF-DDA method resulted in the largest number 
of identifications with Full-Acyl IDentifications (FAID).

Automated identifications of various lipid species are critical for untargeted 
or "macrolipidomic" profiling. Software can match analytical data to extensive 
libraries of spectra, but different instruments employing different technologies 
and different acquisitions modes can influence the ability to match spectra 
with library references. For this exercise, whole blood was examined due to 
its complex lipid profile and potential use of this matrix for biomarker discovery 
through dried blood spots.

QTOF-HDDDA resulted in the largest number of lipid IDs, but 
QTOF-DDA resulted in the largest number of species with FAID.

There were 344 species in total that were identified in consensus 
across the four methods, and 49 with FAID. QTOF-HDDDA and 
QTOF-DDA had the highest consensus while QTOF-HDDIA 
tended to have the lowest.

Fragmentation patterns were similar across methods, but parent 
ion abundances were much lower in QTOF-DDA and QE-DDA 
than QTOF-HDDDA suggesting that colision energy optimization 
may be necessary to maximize lipid identifications.

The quantitative ability of QTOF-HDDDA, QTOF-DDA and  
QE-DDA was similar using summed absolute abundances of 
fragment ions.
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All chemicals and solvents, including chloroform, methanol, isopropanol, acetonitrile, formic 
acid and ammonium formate were purchased from Thermo-Fisher Scientific. The column 
was a Waters Aqcquity UPLC CSH C18 with dimensions 1.7um x 2.1mm x 150mm. The 
instruments used were a Waters Synapt G2Si QTOF mass spectrometer coupled to a Waters 
UPLC I-class system, and a Thermo Q-Exactive Orbitrap mass spectrometer coupled to a 
Dionex UltiMate 3000 UHPLC system.
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Lipids were extracted from the whole blood (50uL) of a healthy 26-year old male volunteer  
in quadruplicate using 2:1 chloroform:methanol containing 500pmol of diheptadecanoyl 
phosphatidylcholine as the internal standard. Extracts were dried and reconstituted in 100uL 
65:35:5 isopropanol:acetonitrile:water +0.1% formic acid. The samples were analyzed using 
UHPLC-MS/MS on the Waters and Thermo/Dionex systems using a multi-step, reversed-
phase gradient consisting of A: 60:40 acetonitrile:water and B: 90:10 isopropanol:acetonitrile, 
both with 10mM ammonium formate and 0.1% formic acid. The flow was set at 250uL/min, the 
column was kept at 45ºC, sample tray at 4ºC, and injection volume was 10uL.

The Waters QTOF mass spectrometer was operated in positive ESI, spray voltage 2.5kV, 
high-resolution mode (continuum; approx. 55,000 res in HD, 42,000 res non-HD), scan range 
m/z 50→1000, under three different acquisition modes: 1) QTOF-HDDIA (HDMSE) with scan 
frequency 0.2sec and Transfer Cell collision energy ramp 20V→50V; 2) QTOF-HDDDA for 
top-5 ions with scan frequency 0.1sec and transfer cell collision energy ramps 20V→30V 
at low mass, and 30V→50V at high mass; 3) QTOF-DDA for top-5 ions with the same scan 
frequency and collision energy ramps as HDDDA. All QTOF-MS data was lock-mass corrected 
using a dedicated spray infusing leucine enkephalin (m/z 556.2771). 
The Thermo Q-Exactive mass spectrometer was operated in positive ESI, spray voltage 
2.5kV, 35,000 resolution in MS and 17,500 resolution in MS/MS, scan range m/z 70→1000, 
DDA for top-5 ions and normalized collision energy of 17.5 (QE-DDA). QE-DDA MS data was 
lock-mass corrected using diisooctyl phthalate (m/z 391.28421). 
An inclusion list was generated from the QTOF-HDDIA experiment and was used in QTOF-
HDDDA, QTOF-DDA and QE-DDA experiments, which included m/z values for 758 precursor 
ions. Data analysis was completed using SimLipid software (PREMIER Biosoft, CA, USA) and 
Ad-Hoc analyses on peak area integration and repeatability were completed using Waters 
MassLynx and Thermo Xcalibur software.

Figure 3. MS/MS Spectra for Selected High-, Intermediate-, and Low-Abundant Lipid Species in Whole Blood Across MS Platforms and Acquisition Modes
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Figure 1. Lipid IDs with Full-Acyl IDentifications (FAID)

The size of the circles is proportional to the number of identifications with the size of the circles in B scaled up 300% relative to A.

Table 1. Lipid Identifications from the Four MS Acquisition Modes
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PC, diacylglycerophosphocholines; LPC, Monoacylglycerophosphocholines; PE, 
Diacylglycerophosphoethanolamines; LPE, Monoacylglycerophosphoethanolamines; 
PS, Diacylglycerophosphoserines; PI, Diacylglycerophosphoinositols; TAG, 
Triacylglycerols. FAID is achieved when three acyl fragments are identified for TAG, 
two for PC, PE, PS and PI, and one for LPC and LPE in the MS/MS spectra.

Figure 4. Log2-ratio transformation of normalized abundances of PC species

A. Number of total lipid IDs B. Number of lipid IDs with FAID

PC, glycerophosphocholines; PE, glycerophosphethanolamines; glycerophosphoserines; PI, 
glycerophosphinositols; PG, glycerophosphoglycerols; PA, glycerophosphates; TAG, triradylglycerols.

The underscore in the compound name indicates that there is no explicit regiospecific information given in terms of sn-1, sn-2 or sn-3 localization on the glycerol backbones of these structures. 
The QTOF-HDDIA method resulted in a convoluted MS/MS spectra (likely fragments from other lipid species that co-eluted and were not properly assigned to the precursor ions of interest). 
The QTOF-HDDDA and QTOF-DDA were similar but there was greater fragmentation in QTOF-DDA despite the same collision energy ramps.  
The QTOF-DDA and QE-DDA spectra showed similar fragmentation patterns and relative ion abundances despite being done on different instruments.

The repeatability of quantitation of 50 PC species (x-axis), where fragment ion absolute 
abundances from MS/MS spectra were summed and divided by the sum of fragment ions from the 
internal standard. Coefficients of variability were below 5% for all methods after integration of peak 
areas from extracted ion profiles using precursor ion accurate masses.
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Lipid 
Class Sub Class QTOF-

HDDIA
QTOF-
HDDDA

QTOF-
DDA

QE-
DDA

PC Diacylglycerophosphocholines 69 268 400 104
PC 1-alkyl,2-acylglycerophosphocholines 38 77 114 42
PC Monoacylglycerophosphocholines 14 17 21 14
PC 1-(1Z-alkenyl),2-acylglycerophosphocholines 7 44 67 7
PC Dialkylglycerophosphocholines 5 16 22 4
PC 1-acyl,2-(1Z-alkenyl)-glycerophosphocholines 0 4 7 1
PC 1-acyl,2-alkylglycerophosphocholines 1 2 7 0
PC 1Z-alkenylglycerophosphocholines 1 2 3 0
PC Monoalkylglycerophosphocholines 2 2 2 0
PC Oxidized glycerophosphocholines 0 0 3 0
PE Diacylglycerophosphoethanolamines 16 164 95 34
PE 1-(1Z-alkenyl),2-acylglycerophosphoethanolamines 6 35 8 10
PE Monoacylglycerophosphoethanolamines 0 9 0 6
PE 1-alkyl,2-acylglycerophosphoethanolamines 1 35 0 1
PE Dialkylglycerophosphoethanolamines 0 2 0 0
PE 1-acyl,2-alkylglycerophosphoethanolamines 1 1 0 0
PE Oxidized glycerophosphoethanolamines 4 4 5 5
PS Diacylglycerophosphoserines 7 25 25 12
PI Diacylglycerophosphoinositols 0 7 0 0
PG Dialkylglycerophosphoglycerols 1 3 0 0
PG Diacylglycerophosphoglycerols 1 0 0 0
PA Diacylglycerophosphates 4 67 0 0
PA Monoacylglycerophosphates 0 1 0 0
Sterols Steryl esters 6 4 5 5
TAG Triacylglycerols 631 906 474 433
Total 815 1695 1258 678


