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INTRODUCTION

Flow injection analysis (FIA) coupled with high-resolution mass spectrometry (HRMS) instrument-
based methods are increasingly becoming recognized as a suitable technique in Lipidomics studies.
We present a lipidomic method using FIA coupled to an Orbitrap-based mass spectrometer. Lipid
species were measured using data independent acquisition (DIA) based MS/MS data. The
concentration of the lipid species present in the samples was measured using the parent ion
abundance normalized to the internal standard belonging to the same class and compared to the
product ion abundances of the same species.
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and MS Excel is shown in Figure 1.

RESULTS

Raw Data Processing and MS1 Database Search

The raw data (Figure 2(A)) was directly imported as Xcalibur .raw format files into SimLipid software for
data processing, identification of probable lipids, and quantitative analysis. While loading the raw data,
averaged spectrum (Figure 2(B)) of each data file containing 118 spectra of Full MS1 scans was
generated using 5 ppm peak m/z tolerance.

The MS1 database search was performed with mass tolerances of 5 ppm on TG, DAG, PA, PC, PE, PG, PI,
PS, Ceramides, Sphingomyelins, Neutral Glycosphingolipids, Steryl Esters, Cholesterols and Derivatives,
Oxidized Glycerophospholipids classes. PE and PC lipids with ether- and plasmalogen- substituents were
considered. Glycerophospholipids were only considered if containing an even number of carbons on
one of its fatty acid chains. A total of 14138 molecular ions belonging to 9866 unique lipid species were
obtained from the MS1 database search using a mass tolerance of 5 ppm (Figure 2(C)).
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Figure 2: Typical SimLipid software GUI allowing users to (A) import multiple raw files, (B) generate averaged spectra by collating data from full MS1
scans, and (C) MS1 peaks annotated with probable lipid ions.

Custom Database

Results from the MS1 database search — LipidMaps ID numbers, molecular formula of the parent ions,
and their corresponding theoretical m/z values — were exported into a CSV file that can be directly
imported as a custom database into SimLipid server database program.

DIA-MS/MS Database Search

DIA-MS/MS spectra were subjected to SimLipid database search on the 14138 molecular ions stored in
the custom database using the parameters specified in the Figure 3.
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Figure 3: A typical SimLipid GUI showing selection of the custom database

for DIA-MS/MS search.
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Figure 4: Annotated MS/MS spectra of deuterated TG, DG, PC, LPC, PI,

SM, LPE, PE, Cer, and CE lipid species.

The raw data from the triplicate analysis was subjected to SimLipid peak detection and peak picking for
the preferred list by setting the parameters as shown in Figure 1.

SimLipid search results were exported into MS Excel file. We manually removed unlikely ion species
e.g., TG/DG lipids that have three/two unique fatty acid chains but only one/no fatty acid chain
resolved by the MS/MS spectra. Lipids from other classes must have their corresponding head group
diagnostic ions observed in the MS/MS spectra e.g., peak at 369.3516 m/z for cholesterol esters.
Figures 4 shows MS/MS spectra annotated with fragment ions of the deuterated internal standards. A
total of 683 lipid ions belonging to 592 unique lipids were identified with high confidence.

Extracting Product lon Abundance

We use in-built MS Excel formulas to map the total product ions abundances of a lipid species across
experimental runs. For example, the MS/MS spectrum annotated with characteristic ions of

[TG(18:1(97)/15:0/15:0)(d7)+NH4]+ in Figure 4 (top left spectrum) has a total ion abundance of
14517457.5. Table 1 shows the product ion abundances of the lipid molecular ion across the replicates

of LTR and Alz.

Quantifiable Lipid Species

Finally, only 330 unique lipid species featuring consistent product ion abundances — coefficient of
variation (CV) <20% — across the two plasma samples were saved as a custom database (DB MS2) in
SimLipid by storing the identified parent ion species too. The averaged full MS spectra were re-
annotated with the newly created DB MS2. A total of 206 peaks were annotated with CV <20% of the
precursor ion abundances across replicates of the two plasma samples. The precursor/product ion
abundances were normalized to the ion abundances of their respective class-specific internal
standards. Table 2 provides a summary of the lipid ions and lipid molecular species that were identified

at various steps of the data analysis.
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001_LTR_pos Scan562  14:0 C=0+_225.2209(164391.0), 17:1
C=0+_272.2958(165315.1406), M-
18:1 523.4714(4795392.5), M-15:0 570.5466(1.3802956E7)
002_LTR_pos Scan562  14:0 C=0+_225.2214(119977.7109), 17:1
C=0+_272.2961(117581.8516), M-
18:1_523.4725(3617818.25), M-
15:0 570.5478(1.0662081E7)
003_LTR pos Scan562  14:0 C=0+_225.221(139723.0156), 17:1
C=0+_272.2959(149279.875), M-
18:1 523.4717(4499379.5), M-15:0 570.5469(1.3345439E7)
004_LTR_pos Scan562 14:0 C=0+_225.2208(140597.0), 17:1
C=0+ 272.2956(121403.4219), M-
18:1 523.4708(3316333.75), M-15:0_570.546(9959466.0)
005_LTR pos Scan562  14:0 C=0+ 225.2213(125254.0469), 17:1
C=0+_272.296(139520.625), M-
18:1 523.4721(3910206.75), M-
15:0 570.5474(1.1615424E7)
011_Alz_pos Scan562 14:0 C=0+_225.2215(108610.75), 17:1
C=0+_272.2966(117496.7734), M-
18:1 523.4725(3562666.75), M-
15:0 570.5477(1.0525509E7)
012_Alz_pos Scan562  14:0 C=0+_225.2204(87213.4688), 17:1
C=0+_272.2952(89490.9766), M-
18:1 523.4711(2899138.75), M-15:0_570.5463(8555618.0)
013_Alz_pos Scan562  14:0 C=0+_225.2208(127992.1406), 17:1
C=0+_272.2955(161082.4844), M-
18:1 523.4715(4281151.0), M-15:0 570.5466(1.2684512E7)
014_Alz_pos Scan562 14:0 C=0+_225.2211(126722.6094), 17:1
C=0+_272.2962(137954.75), M-
18:1 523.4718(3554142.75), M-
15:0 570.5471(1.0176076E7), M-H20_794.7608(6288.2163)
Average Abundance of TG(18:1(92)/15:0/15:0)(d7)[rac] in LTR
Average Abundance of TG(18:1(92)/15:0/15:0)(d7)[rac] in Alz
LTR: Coefficient of Variation
Alz: Coefficient of Variation

Matched lon
Abundance
(Sum)
18928048.77

14517457.5

18133822.55

13537802.54

15790402.31

14314281.75

11631465.34

17254741.67

14001181.56

16181506.74
14300417.58
14%
16%

Table 1: Product ion abundance of [TG(18:1(9Z)/15:0/15:0) (d7)+NH4]+
across the experimental runs extracted from typical SimLipid result file.
The column “Matched lons” follows the reporting nomenclature:

<Fragment Name>_<Observed m/z>(<Observed Abundance>).

# Lipids # Unique | # Lipids*
with CV< | isomeric with CV<

20% groups 20%
(e.g., TG
40:2)
TG 7719 4576 256 239 150 43 44
PC 1075 806 93 93 65 55 54
PE 816 721 18 18 6 6 6
DG 775 434 19 15 5 5 5
PG 676 629 0 0 3 3 3
PS 666 629 6 6 2 2 1
Pl 621 578 35 35 1 1 1
PA 580 544 2 2 0 0 0
Chol & Der 209 188 0 0 0 0 0
PC P- 170 122 11 11 9 9 6
GlcCer 124 56 0 0 0 0 0
PC O- 117 100 37 37 23 23 23
Cer 113 61 4 4 1 1 0
CE 73 69 42 28 15 15 15
PE P- 71 68 11 11 1 1 0
SM 66 65 95 42 32 31 31
LPE 62 48 14 13 1 1 1
PE O- 61 57 9 9 1 1 1
LPC 39 28 18 17 9 9 9
LPG 25 24 0 0 0 0 0
LPA 22 21 0 0 0 0 0
LPS 18 17 0 0 0 0 0
LPI 17 16 4 4 0 0 0
Oxidized PE 15 5 5 5 5 5 5
Oxidized PC 8 4 4 3 1 1 1
14138 9866 683 592 330 212 206

Table 2: A summary of the number of lipid ions annotated using
MS1 and MS2 data. * The lipid molecular species that were
annotated on the averaged MS1 spectra using the 330 lipid
species were identified with high confidence based on MS/MS
data, and extracted product ion intensity across the replicates of
two plasma samples have CV<20%.

Comparative Analysis

Out of the 206 lipids for which we compared the normalized precursor versus product ion abundances
(Figures 5(A)-5(C)), 169 lipids showed similar patterns of change in relative concentrations calculated
using normalized precursor/product ion abundances between the study groups i.e., if a lipid species
showed increase/decrease in the normalized precursor ion abundances from the sample “LTR” to “Alz”,
the normalized product ion abundances also showed the same pattern. Figures 6 shows the 37 lipids
that exhibit different patterns.
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Figure 5(A): Bar charts showing the normalized precursor/ Figure 5(B): Bar charts showing the normalized precursor/product ion
product ion abundances of DG, LPC, PE, PR-O, Oxidized- abundances of PC, PC O-, and PC P- lipids.

PE/PC, PG, and SM lipids. Inset in the chart of SM lipids
displays the zoom in region of low abundant SM lipids.
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Figure 5(C): Bar charts showing the normalized precursor/product ion abundances of TG lipids: The upper charts showed the concentrations of the
isomeric groups, and the lower charts show the concentrations of the TG lipids with known fatty acyl composition.
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Figure 6: Bar charts showing lipid species that exhibit different patterns of change in relative concentrations calculated using normalized
precursor/product ion abundances between the study groups (Upper chart: normalized ion abundances >=0.16, and Lower chart: normalized ion
abundances <0.16)

CONCLUSION

We have developed a high throughput lipidomic workflow for nanoflow injection and data
independent acquisition, identification and relative quantitation. We investigated to check whether
the product ion abundances of lipids could be utilized as a measure of quantifying their concentrations
present in the samples. Comparative analysis showed strong agreement in the pattern of change in
relative concentrations calculated using normalized precursor/product ion abundances between the
study groups. The question whether normalized product ion abundances from using FIA-MS based
workflows can deconvolute the concentrations of isobaric lipid molecules is still left unanswered. One
possible way could be comparing the normalized precursor/product ion abundances against LC-MS
peak areas.




